
Communicative Interactive Partially Observable Monte Carlo Planning

Sarit Adhikari, Piotr Gmytrasiewicz
University of Illinois at Chicago

Chicago, Illinois 60607
sadhik6@uic.edu, piotr@uic.edu

Abstract

Communicative Interactive POMDPs (CIPOMDPs) provide a
ToM (Theory of Mind) approach to interaction and commu-
nication among agents in a partially observable stochastic en-
vironment. The sophistication of nested opponent modeling
comes at a high computation cost. Monte Carlo simulations
provide a highly efficient technique for both tree search and
belief state updates. As POMCP has been shown to scale well
to POMDP problems with large state spaces, we adopt the
technique to communicative interactive POMDPs. The ap-
proach provides scalability for a higher time horizon when
the number of interactive states explodes in size and signifi-
cantly improves time for policy computation compared to the
offline point-based approach.

Introduction and Background
The theory of mind approach to interaction and communica-
tion is important in both collaborative and deceptive settings.
When it comes to human-machine teams, not only explic-
itly modeling beliefs, capabilities, and preferences of one
another, but also communicating their beliefs might lead to
better collective performance and higher reward. The single-
agent frameworks cannot sufficiently account for nested op-
ponent modeling structure and communication among the
agents. CIPOMDP (Gmytrasiewicz 2020) is the first general
framework for an autonomous self-interested agent to com-
municate and interact with other agents. A finitely nested
communicative interactive POMDP of agent i in an environ-
ment with agent j is defined as:

CIPOMDPi = 〈ISi,l, A,M,Ωi, Ti, Oi, Ri〉 (1)

As in Interactive Partially Observable Markov Decision
Processes (IPOMDPs) (Gmytrasiewicz and Doshi 2005),
ISi,l ,A, Ωi, Ti,Oi andRi denote a set of interactive states,
a set of actions, a set of observations, transition function, ob-
servation function and reward function respectively. M is a
set of messages the agents can send to (mi,s) and receive
from (mi,r) each other. Each message in M can be inter-
preted as a marginal probability distribution spanned on the
agents’ interactive state spaces ISi (and ISj). The model of
agent j (θj) is a part of the interactive state of agent i. i.e.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is = (s, θj) ; is ∈ ISi. Belief update for CIPOMDP is de-
fined analogous to IPOMDP where messages are treated as
additional actions and observations. Like actions, messages
are used to achieve valuable belief states.

The sophistication of nested modeling and communica-
tion comes at a high computation cost. The offline point-
based solution technique (Adhikari and Gmytrasiewicz
2021), improves upon an exact solution but can only solve
problems with a limited horizon. Also, since only maximiz-
ing value function is backed up from the previous time-step,
the probability distribution over action, message pair can-
not be calculated. Monte Carlo simulations provide a highly
efficient technique for both tree search and belief state up-
dates. As POMCP (Silver and Veness 2010) has been shown
to scale well to POMDP problems with large state space, the
communicative and interactive variant of POMCP should
provide scalability for a higher time horizon when the num-
ber of interactive states explodes in size. Further, at each
node of the tree, we have access to the utility function for
each action, message pair. This allows us to compute the
probability of sending each action message pair while taking
bounded rationality into account. The bounded rationality is
modeled using the quantal response equation

P (aj ,mj |θj) =
exp[λUj(aj ,mj)]∑

aj ,mj
exp[λUj(aj ,mj)]

(2)

where λ is the rationality parameter. When λ is 0, the
choice is random, when λ is infinity the soft max criterion
becomes hard max. The utility Uj in equation 2 is defined by
equation 3 except the max term, which makesU the function
of action and message.

Value Function in CIPOMDPs
The utility of interactive belief of agent i, contained in i’s
type θi, is:

Ui(θi) = max(mi,s,ai)

{ ∑
is∈IS

bi(is)ERi(is,mi,s, ai)+

(3)

+γ
∑

(mi,r,oi)

P (mi,r, oi|bi, ai)×

× Ui(〈SEθi(bi, ai,mi,s, oi,mi,r), θ̂i〉)
}

Here, bi(is) denotes the belief ascribed to interactive state
is . ERi(is,mi,s, ai) above is the immediate reward to i for
sending mi,s and executing action ai given the interactive
state is. γ denotes the discount factor. SE is the belief state
estimation function. The term P (mi,r, oi|bi, ai) depends on
i’s observation and message it receives from another agent j
and is calculated as follows:

P (mi,r, oi|bi, ai) =
∑

is∈IS
bi(is)

∑
aj

Oi(s, ai, aj , oi)Pr(mi,r, aj |θj)

(4)

Here the term Oi(s, ai, aj , oi) is observation function of
i and is part of its model and Pr(mi,r, aj |θj) is calculated
from equation 2.

Monte Carlo Tree Search
Monte Carlo Tree Search is an iterative best-first search al-
gorithm where each iteration comprises four steps - selec-
tion, expansion, simulation, and backpropagation. Since the
search tree is built incrementally in each iteration, a portion
of the tree already exists in the memory. Selection is the pro-
cess of traversing from the root node to a leaf node in the
memory using a tree policy. The expansion adds a new child
node to the tree based on the last action executed in the se-
lection phase. If maximum depth (as determined by horizon
of the game) is not reached, a Monte-Carlo simulation is per-
formed till the maximum depth. This is done using a rollout
policy (which can be as simple as random action selection)
and is called the rollout step. Finally, the final utilities are
propagated to all nodes along the path from the leaf node to
the root. The step is called backpropagation.

(Silver and Veness 2010) introduced a partially observ-
able variant called partially observable Monte Carlo plan-
ning (POMCP) which uses forward search from the cur-
rent node to find an approximation of optimal value function
and consequently the optimal action to take from the current
node. The node corresponds to a history (h) or a belief state.
The node also keeps track of the number of times the history
has been visited N(h) and the average return obtained from
history h V (h). The algorithm combines the ideas of upper
confidence tree search for action selection and particle fil-
tering for belief state update. Both of these procedures are
handled by using the same set of Monte-Carlo simulations.
The desirable properties like convergence to optimal value
function of fully observable MCTS are inherited by POMCP
as well. The POMCP algorithm is shown to achieve high
performance in the large POMDPs compared to traditional
algorithms like value iteration which uses full-width compu-
tation of values in the search tree. Our work builds upon the
POMCP algorithm and extends it for multi-agent and com-
municative settings. Similar to POMCP, we search through
possible belief states of agent i, reachable by executing ac-
tions, receiving observations and exchanging messages.

Hence, the main contribution of the paper is the scalable
sampling based monte-carlo tree search algorithm for in-
teraction and communication among self-interested agents
which improves upon the previous point-based approxima-
tion approach.

Algorithm 1 Communicative Interactive Monte Carlo Tree
search
1: procedure SEARCH(h, I)
2: repeat
3: if h = empty then
4: is ∼ I
5: else
6: is ∼ B(h)
7: end if
8: SIMULATE(is, h, 0)
9: until TIMEOUT()

10: return argmaxb,m V (hbm)
11: end procedure
12:
13: procedure SIMULATE(is, h, depth)
14: if γdepth < ε then
15: return 0
16: end if
17: if h 6∈ T then
18: for a ∈ A, m ∈M do
19: T (ham)← (Ninit(ham), Vinit(ham), ∅)
20: end for
21: return ROLLOUT (is, h, depth)
22: end if
23: s← is.state
24: θj ← is.model

25: a∗i ,m
∗
i ← argmaxai,mi

V (haimi) + c
√

logN(h)
N(haimi)

26: if θj ∈ cache then
27: a∗j ← cache[θj]
28: else
29: if θj .level == 0 then
30: a∗j ← θj .search(hj , bj)
31: M← getMessageDistribution(M, bj , α)
32: mj ∼Mj,0

33: (s′, o, r) ∼ Gj(s, a
∗
j)

34: θ′j ← (hja
∗
joj , θj .frame)

35: else
36: a∗j ,mj,s ← θj .search(hj , bj)
37: (s′, o, r) ∼ Gj(s, a

∗
j , ai)

38: θ′j ← (hja
∗
jmj,sojmi,s)

39: end if
40: end if
41: (s′, o, r) ∼ Gi(s, a

∗
i , a
∗
j)

42: is′ ← (s′, θ′j)
43: R← r + γSIMULATE(is′, ha∗im

∗
i o
∗
im
∗
j , depth+ 1)

44: B(h)← B(h) ∪ {s}
45: N(h)← N(h) + 1
46: N(ha)← N(ha) + 1

47: V (ha)← V (ha) + R−V (ha)
N(ha)

48: return R
49: end procedure
50:
51: procedure ROLLOUT(is, h, depth)
52: if γdepth < ε then
53: return 0
54: end if
55: ai,mi ∼ πrollout(h, .)
56: aj ,mj ∼ πrollout(h, .)
57: (s′, o, r) ∼ G(s, ai, aj)
58: is′ ← (s′, is.model)
59: return r + γROLLOUT (is′, haimioimj , depth+ 1)
60: end procedure
61:

Figure 1: A part of the search space for the CIPOMCP agent i. The leftmost search tree corresponds to level 2 agent i . Each
node of the tree consists of particles corresponding to interactive states. Each sample of the interactive state consists of a
physical state and the model of the other agent j. The model of the other agent j implicitly contains the search tree (middle one
in the figure) and is solved using CIPOMCP as level > 0. The rightmost search tree again corresponds to agent i as modeled
by agent j. and is solved using POMCP since particles in the node correspond to the physical states.

Approach
As each interactive state consists of the model of other
agents, the CIPOMCP search tree also consists of nested
(CI)POMCP search trees for each model. Before the obser-
vation and transitioned states are obtained from the simula-
tor, the action of the other agent needs to be known to pass to
the simulator. The action and message from the other agent
are obtained by using CIPOMCP if l > 0 and POMCP if
l = 0, where l denotes strategy (or nesting) level of the
agent. The history corresponding to the node in the search
tree now consists of (action, message sent, observation, mes-
sage received) across multiple time-steps. Figure 1 shows
the nested structure for CIPOMCP. Each node corresponds
to the collection of particles, each particle denoting a sam-
ple of interactive state. Hence, the particles corresponding to
a node approximate the belief distribution over the interac-
tive states. As the model for the sampled interactive state is
solved, the action and message sent from the opponent are
obtained. We avoid solving the same model again in each it-
eration by caching the action, message pair for each model.

Algorithm - CIPOMCP
Algorithm 1 shows steps for communicative interactive
Monte Carlo tree search. The search in each iteration starts
by sampling the interactive state from the history if history
is not empty, else the interactive state is sampled from ini-
tial belief distribution (line 1-11). In simulate function (line
13-49), the search tree is constructed incrementally if the
node corresponding to the current history doesn’t exist. In
the algorithm, T denotes the search tree, and T (h) denotes
the node in the tree corresponding to the history h. If the
node already exists for the history, the action-message pair
is selected by Upper Confidence Bound (UCB) (line 25).

V (+)(ham) = V (ham) + c

√
logN(h)

N(ham)
(5)

Table 1: Tiger game friend reward function

〈ai, aj〉 TL TR
OR, L 9.5 -100.5
OL, L -100.5 9.5
L, L -1.5 -1.5

OR, OL -40 -95
OL, OL -150 15
L, OL -51 4

OR, OR 15 -150
OL, OR -95 -40
L, OR 4 -51

Then action message pair is selected by

arg max
a,m

V (+)(ham) (6)

Line 29-39 involves recursive solving of search tree for
the model in the current sample of interactive state if the
model wasn’t solved before. If the node doesn’t have any
child nodes, a rollout simulation is performed (line 51-60).
Here as rollout policy, we sample action, message pair from
a uniform distribution for both the agents.

Results
The results are reported on benchmark multi-agent tiger
game with friend reward function (Table 1). In this setting,
the agents face two doors, behind one door there’s a hun-
gry tiger and behind the other, there’s a pot of gold. State
is defined in terms of location of a tiger, TL denotes tiger
left and TR denotes tiger right. In each time-step, the agents
can open either door (OL denotes open left door and OR
denotes open right door) or choose to listen (L). Opening
the door behind gold and tiger gives positive and large nega-
tive rewards respectively. Information gathering action (lis-
ten) also has a small negative reward. If agents choose to

Table 2: Comparison of computation cost (in seconds) for a different number of iterations and size of message spaces for Level
1 CIPOMCP in cooperative multi-agent tiger game

|M |
iterations=500 iterations=1000 iterations=1500

horizon=4 horizon=5 horizon=4 horizon=5 horizon=4 horizon=5
Time Reward Time Reward Time Reward Time Reward Time Reward Time Reward

12
13.24

± 1.16

6.65

± 11.68

15.85

± 0.86

9.0

± 13.69

22.53

± 0.89

7.47

± 10.79

27.84

± 0.76

10.65

± 10.01

43.28

± 1.75

9.4

± 2.2

51.54

± 0.86

12.37

± 4.26

22
13.73

± 0.83

6.92

± 11.96

18.23

± 0.36

9.0

± 10.14

29.70

± 0.71

8.02

± 8.42

38.48

± 0.34

11.2

± 7.85

45.76

± 0.70

9.13

± 2.38

55.92

± 0.91

12.92

± 3.76

Table 3: Comparison of computation cost (in seconds) for a different number of iterations and size of message spaces for Level
2 CIPOMCP in cooperative multi-agent tiger game

|M |
iterations = 500 iterations = 1000 iterations = 1500

horizon=4 horizon=5 horizon=4 horizon=5 horizon=4 horizon=5
Time Reward Time Reward Time Reward Time Reward Time Reward Time Reward

12
608.63

± 30.95

6.1

± 13.42

1049.23

± 62.15

8.45

± 15.73

2080.14

± 58.74

8.02

± 8.42

3192.18

± 204.43

11.2

± 12.1

1315.00

± 42.32

9.67

± 1.96

1889.56

± 54.59

12.85

± 3.93

22
1198.69

± 5.78

7.2

± 11.97

2296.19

± 79.43

7.9

± 13.65

3541.38

± 132.62

7.75

± 10.79

6207.64

± 231.46

11.75

± 7.68

5650.40

± 26.82

9.4

± 2.2

14964.3

± 219.16

13.4

± 3.30

Table 4: Computation cost (in seconds) comparison between
IPBVI-Comm and CIPOMCP

Level Horizon IPBVI-Comm CIPOMCP

1 4 2256.63 ± 73.31 20.45 ± 0.57
5 10799.55 ± 382.73 23.96 ± 0.17

2 4 2682.32 ± 20.73 252.15 ± 4.86
5 13112.54 ± 65.29 406.43 ± 2.75

listen, they get growl indicative of the location of the tiger.
The agents, while interacting with the environment, can also
communicate their beliefs in each time-step which involves
sending and receiving messages. The friend reward function
is defined such that the agent gets its share of the reward and
also half of the reward obtained by the other agent.

The table 4 shows that CIPOMCP significantly improves
time for policy computation compared to offline point based
approach (Adhikari and Gmytrasiewicz 2021). The table 2
and table 3 show the comparison of time of computation and
reward collected in multi-agent cooperative tiger game for
level 1 and level 2 CIPOMCP agents respectively for differ-
ent iterations, discretization intervals and time horizons. The
more number of iterations yields a better solution but at a
higher computational cost. The results are averaged over 20
trials. The experiments were conducted on a machine with
Intel Core i5 2GHz, 16GB RAM, and Windows OS.

Conclusion and Future Work
We presented an online sampling-based algorithm to com-
pute policy for a theory of mind (ToM) agent acting in a
stochastic and partially observable environment. We showed

the online approach outperforms the offline point-based ap-
proximation algorithm in terms of computation time while
achieving similar performance in a benchmark multi-agent
tiger game.

As a future work, we want to leverage the online algo-
rithm to study more interesting communicative and interac-
tive scenarios between agents with varied preferences, strat-
egy levels and bounded rationality. Further we want to ex-
plore other rollout policies which might provide more accu-
rate estimate compared to random policy.

References
Adhikari, S.; and Gmytrasiewicz, P. 2021. Point Based So-
lution Method for Communicative IPOMDPs. In Rosenfeld,
A.; and Talmon, N., eds., Multi-Agent Systems, 245–263.
Cham: Springer International Publishing. ISBN 978-3-030-
82254-5.
Gmytrasiewicz, P.; and Doshi, P. 2005. A Frame-
work for Sequential Planning in Multiagent Settings.
Journal of Artificial Intelligence Research 24: 49–79.
Http://jair.org/contents/v24.html.
Gmytrasiewicz, P. J. 2020. How to Do Things with Words:
A Bayesian Approach. J. Artif. Intell. Res. 68: 753–776.
doi:10.1613/jair.1.11951. URL https://doi.org/10.1613/jair.
1.11951.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Lafferty, J.; Williams, C.; Shawe-Taylor,
J.; Zemel, R.; and Culotta, A., eds., Advances in Neural
Information Processing Systems, volume 23. Curran Asso-
ciates, Inc.

